Statistical association studies are an important tool in detecting novel disease genes. However, for sequencing data, association studies confront the challenge of low power because of relatively small data sample size and rare variants. Incorporating biological information that reflects disease mechanism is likely to strengthen the association evidence of disease genes, and thus increase the power of association studies. In this paper, we annotate non-synonymous single-nucleotide variants according to protein binding sites (BSs) by using a more accurate BS prediction method. We then incorporate this information into association study through a statistical framework of likelihood ratio test (LRT) based on weighted burden score of single-nucleotide variants (SNVs). The strategy is applied to Genetic Analysis Workshop 19 exome-sequencing data for detecting novel genes associated to hypotension. The SNV-weighting LRT idea is empirically verified by the simulated phenotypes (336 cases and 1607 controls), and the weights based on BS annotation are applied to the real phenotypes (394 cases and 1457 controls). Such strategy of weighting the prior information on protein functional sites is shown to be superior to the unweighted LRT and serves as a good complement to the existing association tests. Several putative genes are reported; some of them are functionally related to hypertension according to the previous evidence in the literature.