Gaseous CO2 is transformed photochemically and thermochemically in the presence of H2 to CH4 at millimole per hour per gram of catalyst conversion rates, using visible and near-infrared photons. The catalyst used to drive this reaction comprises black silicon nanowire supported ruthenium. These results represent a step towards engineering broadband solar fuels tandem photothermal reactors that enable a three-step process involving i) CO2 capture, ii) gaseous water splitting into H2, and iii) reduction of gaseous CO2 by H2.
Keywords: photocatalysis; photochemical catalysis; silicon nanowires; solar fuels; thermochemical catalysis.