Health officials lack field-implementable tools for forecasting the effects that a large-scale release of Bacillus anthracis spores would have on public health and hospitals. We created a modeling tool (combining inhalational anthrax caseload projections based on initial case reports, effects of variable postexposure prophylaxis campaigns, and healthcare facility surge capacity requirements) to project hospitalizations and casualties from a newly detected inhalation anthrax event, and we examined the consequences of intervention choices. With only 3 days of case counts, the model can predict final attack sizes for simulated Sverdlovsk-like events (1979 USSR) with sufficient accuracy for decision making and confirms the value of early postexposure prophylaxis initiation. According to a baseline scenario, hospital treatment volume peaks 15 days after exposure, deaths peak earlier (day 5), and recovery peaks later (day 23). This tool gives public health, hospital, and emergency planners scenario-specific information for developing quantitative response plans for this threat.
Keywords: Keywords: Bacillus anthracis; Sverdlovsk accidental release; anthrax; bacteria; biohazard release; biological warfare; bioterrorism and preparedness; chemoprophylaxis; decision support models; inhalation anthrax; mass casualty incidents; public health practice; theoretical models.