Despite multiple diseases co-occur, their underlying common molecular mechanisms remain elusive. Identification of comorbid diseases by considering the interactions between molecular components is a key to understand the underlying disease mechanisms. Here, we developed a novel approach utilizing both common disease-causing genes and underlying molecular pathways to identify comorbid diseases. Our approach enables the analysis of common pathologies shared by comorbid diseases through molecular interaction networks. We found that the integration of direct genetic sharing and indirect high-level molecular associations revealed significantly strong consistency with known comorbid diseases. In addition, neoplasm-related diseases showed high comorbidity patterns within themselves as well as with other diseases, indicating severe complications. This study demonstrated that molecular pathway information could be used to discover disease comorbidity and hidden biological mechanism to understand pathogenesis and provide new insight on disease pathology.