Current therapies to treat persistent pain and neuropathic pain are limited by poor efficacy, side effects and risk of addiction. Here, we present a novel class of potent selective, central nervous system (CNS)-penetrant potentiators of glycine receptors (GlyRs), ligand-gated ion channels expressed in the CNS. AM-1488 increased the response to exogenous glycine in mouse spinal cord and significantly reversed mechanical allodynia induced by nerve injury in a mouse model of neuropathic pain. We obtained an X-ray crystal structure of human homopentameric GlyRα3 in complex with AM-3607, a potentiator of the same class with increased potency, and the agonist glycine, at 2.6-Å resolution. AM-3607 binds a novel allosteric site between subunits, which is adjacent to the orthosteric site where glycine binds. Our results provide new insights into the potentiation of cysteine-loop receptors by positive allosteric modulators and hold promise in structure-based design of GlyR modulators for the treatment of neuropathic pain.