This paper investigates the pH-responsive self-assembly of an amphiphilic carboxyl-terminated polyester dendrimer, H20-COOH, in aqueous solution using the dissipative particle dynamics method. The electrostatic interactions were described by introducing the explicit interaction between the smeared charges on ionized polymer beads and the counterions. The results show that the self-assemblies could change from unimolecular micelles, microphase-separated small micelles, wormlike micelles, sheetlike micelles, and small vesicles to large vesicles with the decrease in the degree of ionization (α) of carboxylic acid groups. In addition, the detailed self-assembly mechanisms and the molecular packing models have also been disclosed for each self-assembly stages. Interestingly, the wormlike micelles are found to change from linear to branched when α decreases from 0.182 to 0.109. The current work might serve as a comprehensive understanding on the effect of carboxylic acid groups on the self-assembly behaviors of dendritic polymers.