Purpose: The interaction between the inducible costimulatory molecule (ICOS) and ICOS ligand (ICOSL) has been implicated in the differentiation and functions of T cells. The purpose of the present study was to determine the role of ICOS-ICOSL in the immune privilege of corneal allografts.
Methods: Expression of ICOS and ICOSL mRNA from mouse eyes was assessed by RT-PCR. Corneas of C57BL/6 mice were orthotopically transplanted into the eyes of ICOS-/- BALB/c recipients and BALB/c wild-type (WT) recipients treated with anti-ICOSL mAb, and graft survival was assessed. A separate set of WT and ICOS-/- BALB/c mice received an anterior chamber injection of C57BL/6 splenocytes, and induction of allospecific anterior chamber-associated immune deviation (ACAID) was assessed. In vitro, cornea was incubated with T cells from WT and ICOS-/- BALB/c mice, and destruction of corneal endothelial cells (CECs) and the population of Foxp3+ CD25+ CD4+ T cells was assessed.
Results: Inducible costimulatory molecule ligand mRNA was constitutively expressed in the cornea, iris-ciliary body, and retina. Allograft survival in ICOS-/- recipients and WT recipients treated with anti-ICOSL mAb was significantly shorter than in control recipients. Anterior chamber-associated immune deviation was induced less efficiently in ICOS-/- mice. Destruction of CECs by alloreactive ICOS-/- T cells was enhanced compared with WT T cells. After coincubation with allogeneic corneal tissue, the proportion of regulatory T cells was significantly greater among WT T cells than in ICOS-/- T cells.
Conclusions: The expression of ICOSL in the cornea and the ICOS-mediated induction of Foxp3+ CD4+ regulatory T cells may contribute to successful corneal allograft survival.