Background: Patients with coronary microvascular dysfunction (CMD) often have diastolic dysfunction, representing an important therapeutic target. Ranolazine-a late sodium current inhibitor-improves diastolic function in animal models and subjects with obstructive coronary artery disease (CAD).
Hypothesis: We hypothesized that ranolazine would beneficially alter diastolic function in CMD.
Methods: To test this hypothesis, we performed retrospective tissue tracking analysis to evaluate systolic/diastolic strain, using cardiac magnetic resonance imaging cine images acquired in a recently completed, randomized, double-blind, placebo-controlled, crossover trial of short-term ranolazine in subjects with CMD and from 43 healthy reference controls.
Results: Diastolic strain rate was impaired in CMD vs controls (circumferential diastolic strain rate: 99.9% ± 2.5%/s vs 120.1% ± 4.0%/s, P = 0.0003; radial diastolic strain rate: -199.5% ± 5.5%/s vs -243.1% ± 9.6%/s, P = 0.0008, case vs control). Moreover, peak systolic circumferential strain (CS) and radial strain (RS) were also impaired in cases vs controls (CS: -18.8% ± 0.3% vs -20.7% ± 0.3%; RS: 35.8% ± 0.7% vs 41.4% ± 0.9%; respectively; both P < 0.0001), despite similar and preserved ejection fraction. In contrast to our hypothesis, however, we observed no significant changes in left ventricular diastolic function in CMD cases after 2 weeks of ranolazine vs placebo.
Conclusions: The case-control comparison both confirms and extends our prior observations of diastolic dysfunction in CMD. That CMD cases were also found to have subclinical systolic dysfunction is a novel finding, highlighting the utility of this retrospective approach. In contrast to previous studies in obstructive CAD, ranolazine did not improve diastolic function in CMD.
Keywords: Coronary microvascular dysfunction; microvascular ischemia; ranolazine; tissue tracking.
© 2016 Wiley Periodicals, Inc.