Inflammatory bowel disease (IBD) is a severe immune cell-mediated syndrome characterised by extensive inflammatory and effector mucosal responses leading to tissue destruction in the colon and small intestine. The leading hypothesis is that dysbiosis of the gut flora causes an excessive immune response and inflammation in the gastrointestinal track. Lactic acid bacteria (LAB) can correct dysbiosis of the normal microbiota. In the current study, the therapeutic potential of seven LAB strains in combination to treat IBD was evaluated using experimental colitis model. This LAB cocktail, designated GI7, includes four strains of Lactobacillus acidophilus, Lactobacillus plantarum, Lactobacillus rhamnosus, Lactococcus lactis, two strains of Bifidobacterium bifidum, Bifidobacterium breve, and one strain of Streptococcus thermophilus. We confirmed that GI7 suppressed pro-inflammatory cytokines in Raw264.7 macrophages. When dextran sulphate sodium-induced colitic mice were treated with GI7, their symptoms of colitis, as assessed by body weight, colon length, myeloperoxidase activity, intestinal bleeding, and histological damage, were reduced compared to untreated mice. In addition, GI7 treatment significantly inhibited the production of innate pro-inflammatory cytokines during colitic progression. Therefore, we suggest that GI7, a combination of seven LAB, has a potential role in the treatment of IBD.
Keywords: cytokines; experimental colitis; inflammatory bowel disease; innate pro-inflammatory; lactic acid bacteria; probiotics.