De novo peptide sequencing has improved remarkably, but sequencing full-length peptides with unexpected modifications is still a challenging problem. Here we present an open de novo sequencing tool, Open-pNovo, for de novo sequencing of peptides with arbitrary types of modifications. Although the search space increases by ∼300 times, Open-pNovo is close to or even ∼10-times faster than the other three proposed algorithms. Furthermore, considering top-1 candidates on three MS/MS data sets, Open-pNovo can recall over 90% of the results obtained by any one traditional algorithm and report 5-87% more peptides, including 14-250% more modified peptides. On a high-quality simulated data set, ∼85% peptides with arbitrary modifications can be recalled by Open-pNovo, while hardly any results can be recalled by others. In summary, Open-pNovo is an excellent tool for open de novo sequencing and has great potential for discovering unexpected modifications in the real biological applications.
Keywords: de novo peptide sequencing; dynamic programming; tandem mass spectrometry; unexpected modifications.