Tumors expressing programmed death ligand 1 (PD-L1) interact with the corresponding negative-signal generating immune receptor on the surface of CD8 T cells, PD-1, thereby suppressing antitumor activity. Therapeutics blocking this interaction have shown promise in various cancers by restoring functional antitumor T-cell activity. We explored the degree of PD-L1, PD-1, and CD8 expression in a retrospective analysis of 29 clinical synovial sarcoma samples. Quantitative immunohistochemistry and multiplex immunofluorescence were used to determine relative quantification of CD8+ and PD-1+ T cells and PD-L1 expression within the intratumor area and the interface between the tumor and the surrounding nontumor tissue (i.e., invasive margin), and colocalization of these factors, respectively. PD-L1, PD-1, and CD8 cell densities in the tumor-invasive margins were significantly higher in the metastatic tumors than the primary tumors (P < 0.01), and PD-L1, PD-1, and CD8 cell densities were all significantly positively correlated with one other (P < 0.0001). PD-1 cell density in the tumor-invasive margin was significantly associated with worse progression-free survival. Multiplex immunofluorescence demonstrated coexpression of PD-1 and CD8 on lymphocytes within the invasive margin, as well as relative proximity between PD-1+ CD8 cells and PD-L1+ tumor cells. Our results provide a preclinical rationale for screening of patients with synovial sarcoma for the colocalization of CD8, PD-1, and PD-L1, which may be a marker for response to PD-1 blockade therapy. Cancer Immunol Res; 5(2); 118-26. ©2016 AACR.
©2016 American Association for Cancer Research.