Cutaneous melanoma (CM) cells are resistant to apoptosis, and steroid hormones are involved in this process through regulation of TP53, MDM2, BAX, and BCL2 expression. We analyzed herein sex differences in outcomes of CM patients associated with TP53 c.215G>C, MDM2 c.309T>G, BAX c.-248G>A, and BCL2 c.-717C>A polymorphisms. DNA from 121 men and 116 women patients was analyzed by polymerase chain reaction and enzymatic digestion assays. At 60 months of follow-up, shorter progression-free survival (PFS) was seen in males with MDM2 GG + BCL2 AA (20.0 vs. 62.6%, P = 0.0008) genotype. Men carriers of the genotype had poor PFS (HR 3.78, 95% CI 1.30-11.0) than others. For women, shorter PFS was associated with TP53 GC or CC (61.4 vs. 80.8%, P = 0.01) and TP53 GC or CC + MDM2 TG or GG (59.1 vs. 85.4%, P = 0.01) genotypes at the same time. Women carriers of the genotypes had poor PFS (HR 2.46, 95% CI 1.19-5.09; HR 9.49, 95% CI 1.14-78.50) than others, respectively. Our data present, for the first time, preliminary evidence that inherited abnormalities on TP53, MDM2 and BCL2 genes, enrolled in apoptosis pathways, have a pivotal role in differences of outcomes in women and men with CM.
Keywords: Apoptosis; Cutaneous melanoma; Genetic polymorphism; Prognosis.