A material that rapidly absorbs molecular oxygen (known as an oxygen scavenger or deoxygenation agent (DOA)) has various industrial applications, such as in food preservation, anticorrosion of metal and coal deoxidation. Given that oxygen is vital to cancer growth, to starve tumours through the consumption of intratumoral oxygen is a potentially useful strategy in fighting cancer. Here we show that an injectable polymer-modified magnesium silicide (Mg2Si) nanoparticle can act as a DOA by scavenging oxygen in tumours and form by-products that block tumour capillaries from being reoxygenated. The nanoparticles are prepared by a self-propagating high-temperature synthesis strategy. In the acidic tumour microenvironment, the Mg2Si releases silane, which efficiently reacts with both tissue-dissolved and haemoglobin-bound oxygen to form silicon oxide (SiO2) aggregates. This in situ formation of SiO2 blocks the tumour blood capillaries and prevents tumours from receiving new supplies of oxygen and nutrients.