Arsenic Methyltransferase is Involved in Arsenosugar Biosynthesis by Providing DMA

Environ Sci Technol. 2017 Feb 7;51(3):1224-1230. doi: 10.1021/acs.est.6b04952. Epub 2017 Jan 27.

Abstract

Arsenic is an ubiquitous toxic element in the environment, and organisms have evolved different arsenic detoxification strategies. Studies on arsenic biotransformation mechanisms have mainly focused on arsenate (As(V)) reduction, arsenite (As(III)) oxidation, and arsenic methylation; little is known, however, about the pathway for the biosynthesis of arsenosugars, which are significant arsenic transformation products. Here, the involvement of As(III) S-Adenosylmethionine methyltransferase (ArsM) in arsenosugar synthesis is demonstrated for the first time. Synechocystis sp. PCC 6803 incubated with As(III) or monomethylarsonic acid (MMA(V)) produced dimethylarsinic acid (DMA(V)) and arsenosugars, as determined by high performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC/ICPMS). Arsenosugars were also detected in the cells when they were exposed to DMA(V). A mutant strain Synechocystis ΔarsM was constructed by disrupting arsM in Synechocystis sp. PCC 6803. Methylation of arsenic species was not observed in the mutant strain after exposure to arsenite or MMA(V); when Synechocystis ΔarsM was incubated with DMA(V), arsenosugars were detected in the cells. These results suggest that ArsM is a required enzyme for the methylation of inorganic arsenicals, but not required for the synthesis of arsenosugars from DMA, and that DMA is the precursor of arsenosugar biosynthesis. The findings will stimulate more studies on the biosynthesis of complex organoarsenicals, and lead to a better understanding of the bioavailability and function of the organoarsenicals in biological systems.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Arsenic / metabolism*
  • Arsenicals / metabolism
  • Cacodylic Acid / metabolism*
  • Chromatography, High Pressure Liquid
  • Mass Spectrometry
  • Methyltransferases
  • S-Adenosylmethionine

Substances

  • Arsenicals
  • S-Adenosylmethionine
  • Cacodylic Acid
  • Methyltransferases
  • Arsenic