Background: Improving the efficacy of anticancer therapy remains an urgent and very important task. Screening of the individual genetic metabolism of cancer patients allows for prescribing adequate medication in the correct dose as well as for decreasing side effects associated with drug toxicity.
Objective: Estimation of a microarray-based method for genotyping of the UGT1A1, DPYD, GSTP1, and ABCB1 metabolic regulation genes to evaluate for an increased risk of toxicity of anticancer drugs.
Methods: The microarray was used to conduct genotyping of specimens taken from 115 cancer patients and 31 healthy donors.
Results: A microarray-based method for identification of the rs8175347, rs3918290, rs1695, and rs1045642 polymorphisms in the corresponding UGT1A1, DPYD, GSTP1, and ABCB1 genes has been developed for genotyping. The results obtained were in full concordance with those obtained using control sequencing. The frequencies of the rs8175347, rs3918290, rs1695, and rs1045642 genetic variations were 0.38, 0, 0.35, and 0.56, respectively.
Conclusion: The implementation of this biochip-based method in diagnostic practice should increase the overall survival and quality of life of cancer patients, decrease the length of their hospital stay, and reduce treatment costs.
Keywords: Genotyping; cancer; microarray; pharmacogenetics; polymorphisms.