Preliminary Results on Long-Term Potentiation-Like Cortical Plasticity and Cholinergic Dysfunction After Miglustat Treatment in Niemann-Pick Disease Type C

JIMD Rep. 2017:36:19-27. doi: 10.1007/8904_2016_33. Epub 2017 Jan 17.

Abstract

Niemann-Pick disease type C (NPC) is a rare autosomal recessive lysosomal storage disorder, which manifests clinically with a wide range of neurological signs and symptoms. We assessed multiple neurological, neuropsychological and neurophysiological biomarkers using a transcranial magnetic stimulation (TMS) multi-paradigm approach in two patients with NPC carrying a homozygous mutation in the NPC1 gene, and in two heterozygous family members.We assessed short-interval intracortical inhibition (SICI), intracortical facilitation (ICF), long-interval intracortical inhibition (LICI), short-latency afferent inhibition (SAI) and long-term potentiation (LTP)-like cortical plasticity with a paired associative stimulation (PAS) protocol.Baseline SAI and LTP-like plasticity were impaired in both patients with NPC and in the symptomatic heterozygous NPC1 gene mutation carrier. Only a limited decrease in SICI and ICF was observed, while LICI was within normal range in all subjects at baseline. After 12 months of treatment with miglustat, a considerable improvement in SAI and LTP-like plasticity was observed in both patients with NPC. In conclusion, these biomarkers could help to confirm the diagnosis of NPC, and may give an indication of prognostic outcomes in pharmacological trials.

Keywords: Long-term potentiation-like cortical plasticity; Miglustat; Niemann-Pick disease type C; Short latency afferent inhibition; Transcranial magnetic stimulation.