Arginine methyltransferases catalyze the posttranslational methylation of arginine, which is involved in a range of important biological processes. aflrmtA gene, an arginine methyltransferase was deleted from Aspergillus flavus in this study by homologous recombination. In morphogenesis assay, aflrmtA was found to down-regulate conidiation by regulating the activity of brlA and abaA genes. It was also found to increase sclerotia formation by up-regulating the expression of nsdC and nsdD genes. In mycotoxin biosynthesis, aflrmtA gene was found to significantly up-regulate the biosynthesis of AFB1 in PDA and PDB media by improving the expression of aflR, aflC and aflK, but it was of no effect in YES medium. aflrmtA was further found to be an important regulator of response to plasma membrane lesion, osmotic, and H2O2 - induced oxidative stresses. In pathogenicity analysis, aflrmtA was found to repress conidiation and up-regulate the AFB1 biosynthesis of A. flavus on peanut and corn seeds and also the activities of protease and lipase, but the activity of amylase was down-regulated. It was concluded that aflrmtA gene played important roles in the morphogenesis, mycotoxin biosynthesis and pathogenicity of A. flavus, and it could be a potential target in the prevention and control of crop contamination by A. flavus.
Keywords: A. flavus; AFB1; Histone methyltransferase; Pathogenicity; aflrmtA gene.
Copyright © 2017 Elsevier Ltd. All rights reserved.