As a promising method for treating intractable epilepsy, the inhibitory effect of low-frequency stimulation (LFS) is well known, although its mechanisms remain unclear. Excessive levels of cerebral glutamate are considered a crucial factor for epilepsy. Therefore, we designed experiments to investigate the crucial parts of the glutamate cycle. We evaluated glutamine synthetase (GS, metabolizes glutamate), glutaminase (synthesizes glutamate), and glutamic acid decarboxylase (GAD, a γ-aminobutyric acid [GABA] synthetase) in different regions of the brain, including the dentate gyrus (DG), CA3, and CA1 subregions of the hippocampus, and the cortex, using western blots, immunohistochemistry, and enzyme activity assays. Additionally, the concentrations of glutamate, GABA, and glutamine (a product of GS) were measured using high-performance liquid chromatography (HPLC) in the same subregions. The results indicated that a transiently promoted glutamate cycle was closely involved in the progression from focal to generalized seizure. Low-frequency stimulation (LFS) delivered to the ventral hippocampus had an antiepileptogenic effect in rats exposed to amygdaloid-kindling stimulation. Simultaneously, LFS could partly reverse the effects of the promoted glutamate cycle, including increased GS function, accelerated glutamate-glutamine cycling, and an unbalanced glutamate/GABA ratio, all of which were induced by amygdaloid kindling in the DG when seizures progressed to stage 4. Moreover, glutamine treatment reversed the antiepileptic effect of LFS with regard to both epileptic severity and susceptibility. Our results suggest that the effects of LFS on the glutamate cycle may contribute to the antiepileptogenic role of LFS in the progression from focal to generalized seizure.
Keywords: Amygdaloid kindling; Epileptogenesis; Glutamate cycle; Low-frequency stimulation.
Copyright © 2016 Elsevier Inc. All rights reserved.