Purpose: To assess the spatial correlation between MRI and 18F-fludeoxyglucose positron emission tomography (FDG-PET) maps of human brown adipose tissue (BAT) and to measure differences in fat fraction (FF) between glucose avid and non-avid regions of the supraclavicular fat depot using a hybrid FDG-PET/MR scanner.
Methods: In 16 healthy volunteers, mean age of 30 and body mass index of 26, FF, R2*, and FDG uptake maps were acquired simultaneously using a hybrid PET/MR system while employing an individualized cooling protocol to maximally stimulate BAT.
Results: Fourteen of the 16 volunteers reported BAT-positive FDG-PET scans. MR FF maps of BAT correlate well with combined FDG-PET/MR maps of BAT only in subjects with intense glucose uptake. The results indicate that the extent of the spatial correlation positively correlates with maximum FDG uptake in the supraclavicular fat depot. No consistent, significant differences were found in FF or R2* between FDG avid and non-avid supraclavicular fat regions. In a few FDG-positive subjects, a small but significant linear decrease in BAT FF was observed during BAT stimulation.
Conclusion: MR FF, when used in conjunction with FDG uptake maps, can be seen as a valuable, radiation-free alternative to CT and can be used to measure tissue hydration and lipid consumption in some subjects. Magn Reson Med 78:1922-1932, 2017. © 2017 International Society for Magnetic Resonance in Medicine.
Keywords: FDG-PET; brown adipose tissue; fat fraction; imaging; thermogenesis.
© 2017 International Society for Magnetic Resonance in Medicine.