Accurately assessing the microbiological safety of water sources is essential to reduce waterborne fecal exposures and track progress toward global targets of safe water access. Sanitary inspections are a recommended tool to assess water safety. We collected 1,684 water samples from 902 shallow tubewells in rural Bangladesh and conducted sanitary surveys to assess whether sanitary risk scores could predict water quality, as measured by Escherichia coli. We detected E. coli in 41% of tubewells, mostly at low concentrations. Based on sanitary scores, 31% of wells were low risk, 45% medium risk, and 25% high or very high risk. Older wells had higher risk scores. Escherichia coli levels were higher in wells where the platform was cracked or broken (Δlog10 = 0.09, 0.00-0.18) or undercut by erosion (Δlog10 = 0.13, 0.01-0.24). However, the positive predictive value of these risk factors for E. coli presence was low (< 50%). Latrine presence within 10 m was not associated with water quality during the wet season but was associated with less frequent E. coli detection during the dry season (relative risk = 0.72, 0.59-0.88). Sanitary scores were not associated with E. coli presence or concentration. These findings indicate that observed characteristics of a tubewell, as measured by sanitary inspections in their current form, do not sufficiently characterize microbiological water quality, as measured by E. coli. Assessments of local groundwater and geological conditions and improved water quality indicators may reveal more clear relationships. Our findings also suggest that the dominant contamination route for shallow groundwater sources is short-circuiting at the wellhead rather than subsurface transport.