Sherpas share genetic variations with Tibetans for high-altitude adaptation

Mol Genet Genomic Med. 2016 Nov 23;5(1):76-84. doi: 10.1002/mgg3.264. eCollection 2017 Jan.

Abstract

Background: Sherpas, a highlander population living in Khumbu region of Nepal, are well known for their superior climbing ability in Himalayas. However, the genetic basis of their adaptation to high-altitude environments remains elusive.

Methods: We collected DNA samples of 582 Sherpas from Nepal and Tibetan Autonomous Region of China, and we measured their hemoglobin levels and degrees of blood oxygen saturation. We genotyped 29 EPAS1 SNPs, two EGLN1 SNPs and the TED polymorphism (3.4 kb deletion) in Sherpas. We also performed genetic association analysis among these sequence variants with phenotypic data.

Results: We found similar allele frequencies on the tested 32 variants of these genes in Sherpas and Tibetans. Sherpa individuals carrying the derived alleles of EPAS1 (rs113305133, rs116611511 and rs12467821), EGLN1 (rs186996510 and rs12097901) and TED have lower hemoglobin levels when compared with those wild-type allele carriers. Most of the EPAS1 variants showing significant association with hemoglobin levels in Tibetans were replicated in Sherpas.

Conclusion: The shared sequence variants and hemoglobin trait between Sherpas and Tibetans indicate a shared genetic basis for high-altitude adaptation, consistent with the proposal that Sherpas are in fact a recently derived population from Tibetans and they inherited adaptive variants for high-altitude adaptation from their Tibetan ancestors.

Keywords: Genetic adaptation; Sherpa; Tibetan; high altitude; hypoxia.