Induced Pluripotent Stem Cells (iPSCs) hold great promise for disease modeling and regenerative therapies. We previously reported the use of Episomal Vectors (EV) to generate integration-free iPSCs from peripheral blood mononuclear cells (PB MNCs). The episomal vectors used are DNA plasmids incorporated with oriP and EBNA1 elements from the Epstein-Barr (EB) virus, which allow for replication and long-term retainment of plasmids in mammalian cells, respectively. With further optimization, thousands of iPSC colonies can be obtained from 1 mL of peripheral blood. Two critical factors for achieving high reprogramming efficiencies are: 1) the use of a 2A "self-cleavage" peptide to link OCT4 and SOX2, thus achieving equimolar expression of the two factors; 2) the use of two vectors to express MYC and KLF4 individually. Here we describe a step-by-step protocol for generating integration-free iPSCs from adult peripheral blood samples. The generated iPSCs are integration-free as residual episomal plasmids are undetectable after five passages. Although the reprogramming efficiency is comparable to that of Sendai Virus (SV) vectors, EV plasmids are considerably more economical than the commercially available SV vectors. This affordable EV reprogramming system holds potential for clinical applications in regenerative medicine and provides an approach for the direct reprogramming of PB MNCs to integration-free mesenchymal stem cells, neural stem cells, etc.