Background: The transmembrane glycoprotein CD30 contributes to regulate the balance between Th1 and Th2 responses. Previous studies have reported conflicting results on the utility of its soluble form (sCD30) to predict post-transplant infection.
Methods: Serum sCD30 was measured by a commercial ELISA assay at baseline and post-transplant months 1, 3, and 6 in 100 kidney transplant (KT) recipients (279 monitoring points). The impact of sCD30 levels on the incidence of overall, bacterial and opportunistic infection during the first 12 months after transplantation was assessed by Cox regression.
Results: There were no differences in serum sCD30 according to the occurrence of overall or opportunistic infection. However, sCD30 levels were higher in patients with bacterial infection compared to those without at baseline (P=.038) and months 1 (P<.0001), 3 (P=.043), and 6 after transplantation (P=.006). Patients with baseline sCD30 levels ≥13.5 ng/mL had lower 12-month bacterial infection-free survival (35.0% vs 80.0%; P<.0001). After adjusting for potential confounders, baseline sCD30 levels ≥13.5 ng/mL remained as an independent risk factor for bacterial infection (adjusted hazard ratio [aHR]: 4.65; 95% confidence interval [CI]: 2.05-10.53; <.001). Analogously, sCD30 levels ≥6.0 ng/mL at month 1 acted as a risk factor for subsequent bacterial infection (aHR: 5.29; 95% CI: 1.11-25.14; P=.036).
Conclusion: Higher serum sCD30 levels were associated with an increased risk of bacterial infection after KT. We hypothesize that this biomarker reflects a Th2 -polarized T-cell response, which exerts a detrimental effect on the immunity against bacterial pathogens.
Keywords: immunological monitoring; kidney transplantation; post-transplant infection; prediction; soluble CD30.
© 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.