In this study, lentivirus-mediated RNA interference (RNAi) was applied to inhibit latent membrane protein 2A (LMP2A) gene expression, in order to explore the effects of LMP2A silencing on the growth of an Epstein-Barr virus-associated gastric carcinoma (EBVaGC) cell line in vitro. Lentivirus-mediated RNAi technology was employed to specifically knock down the LMP2A gene in the EBV-positive gastric carcinoma cell line GT38. After infection, reverse transcription-quantitative polymerase chain reaction, western blotting, flow cytometry and colony formation assays were conducted to evaluate the expression of LMP2A and the biological behavior of the GT38 cell line in vitro. The results showed that the expression of the LMP2A gene was clearly downregulated in the infected cells, which indicated that a highly efficient and stable lentivirus vector was successfully constructed. In the GT38 cells in which the expression of LMP2A was downregulated, the proliferation and colony formation of the cells was significantly inhibited. In addition, it was found that the cell cycle of the GT38 cells was arrested in the G0/G1 phase and the apoptosis rate was increased. These results indicate that lentivirus-mediated RNAi knockdown of LMP2A inhibits the growth of the EBVaGC cell line GT38 in vitro, and suggests that LMP2A is a potential target for gene therapy in the treatment of EBVaGC.
Keywords: RNA interference; gastric carcinoma; latent membrane protein 2A; lentivirus; proliferation.