Blockade of CaMKII depresses conduction preferentially in the right ventricular outflow tract and promotes ischemic ventricular fibrillation in the rabbit heart

Am J Physiol Heart Circ Physiol. 2017 Apr 1;312(4):H752-H767. doi: 10.1152/ajpheart.00347.2016. Epub 2017 Jan 27.

Abstract

Calcium/calmodulin-dependent protein kinase II (CaMKII) regulates the principle ion channels mediating cardiac excitability and conduction, but how this regulation translates to the normal and ischemic heart remains unknown. Diverging results on CaMKII regulation of Na+ channels further prevent predicting how CaMKII activity regulates excitability and conduction in the intact heart. To address this deficiency, we tested the effects of the CaMKII blocker KN93 (1 and 2.75 μM) and its inactive analog KN92 (2.75 μM) on conduction and excitability in the left (LV) and right (RV) ventricles of rabbit hearts during normal perfusion and global ischemia. We used optical mapping to determine local conduction delays and the optical action potential (OAP) upstroke velocity (dV/dtmax). At baseline, local conduction delays were similar between RV and LV, whereas the OAP dV/dtmax was lower in RV than in LV. At 2.75 μM, KN93 heterogeneously slowed conduction and reduced dV/dtmax, with the largest effect in the RV outflow tract (RVOT). This effect was further exacerbated by ischemia, leading to recurrent conduction block in the RVOT and early ventricular fibrillation (at 6.7 ± 0.9 vs. 18.2 ± 0.8 min of ischemia in control, P < 0.0001). Neither KN92 nor 1 μM KN93 depressed OAP dV/dtmax or conduction. Rabbit cardiomyocytes isolated from RVOT exhibited a significantly lower dV/dtmax than those isolated from the LV. KN93 (2.75 μM) significantly reduced dV/dtmax in cells from both locations. This led to frequency-dependent intermittent activation failure occurring predominantly in RVOT cells. Thus CaMKII blockade exacerbates intrinsically lower excitability in the RVOT, which is proarrhythmic during ischemia.NEW & NOTEWORTHY We show that calcium/calmodulin-dependent protein kinase II (CaMKII) blockade exacerbates intrinsically lower excitability in the right ventricular outflow tract, which causes highly nonuniform chamber-specific slowing of conduction and facilitates ventricular fibrillation during ischemia. Constitutive CaMKII activity is necessary for uniform and safe ventricular conduction, and CaMKII block is potentially proarrhythmic.

Keywords: calcium/calmodulin-dependent protein kinase II; cardiac conduction; ischemia; right ventricular outflow tract; ventricular fibrillation.

MeSH terms

  • Animals
  • Arrhythmias, Cardiac / physiopathology
  • Benzylamines / pharmacology*
  • Calcium-Calmodulin-Dependent Protein Kinase Type 2 / antagonists & inhibitors*
  • Coronary Circulation / drug effects*
  • Enzyme Inhibitors / pharmacology*
  • Female
  • Heart / physiopathology*
  • Heart Conduction System / drug effects*
  • In Vitro Techniques
  • Male
  • Membrane Potentials
  • Myocardial Ischemia / physiopathology*
  • Myocytes, Cardiac / drug effects
  • Rabbits
  • Sulfonamides / pharmacology*
  • Ventricular Fibrillation / physiopathology*
  • Ventricular Outflow Obstruction / chemically induced
  • Ventricular Outflow Obstruction / diagnostic imaging
  • Ventricular Outflow Obstruction / physiopathology*

Substances

  • Benzylamines
  • Enzyme Inhibitors
  • Sulfonamides
  • KN 93
  • Calcium-Calmodulin-Dependent Protein Kinase Type 2