Polymorphisms within the human cytochrome P450 system can have severe clinical consequences and have been associated with adverse drug side effects and susceptibility to environmentally linked diseases such as cancer. Aberrant splicing of cytochrome P450 mRNA has been proposed as a potential mechanism for these polymorphisms. We have isolated aberrantly, as well as normally, spliced mRNAs (cDNAs) from the human P450IIB6 gene which either contain part of intron 5 and lack exon 8 or which contain a 58-bp fragment (exon 8A) instead of exon 8. Sequence analysis of the P450IIB6 gene demonstrates the presence of cryptic splice sites in intron 8 which will account for the generation of exon 8A. The mRNAs were therefore generated by alternative splicing. These data gain significance as the mRNAs will not encode a functional P450 enzyme and appear to represent a high proportion of the P450IIB6 mRNA population. Analysis of mRNA from fifteen individual human livers and cDNA libraries constructed from a variety of human tissues using the polymerase chain reaction shows that the aberrant splicing occurs in all cells and all individuals tested. This suggests a high level of infidelity in the processing of P450IIB6 mRNAs and demonstrates that the presence of abnormal transcripts does not imply the presence of a functionally inactive gene.