New chemotherapeutic compounds and regimens are needed to combat multidrug-resistant Mycobacterium tuberculosis. Here, we used a series of murine models to assess an antitubercular lead compound SKLB-TB1001. In the Mycobacterium bovis bacillus Calmette-Guérin and the acute M. tuberculosis H37Rv infection mouse models, SKLB-TB1001 significantly attenuated the mycobacterial load in lungs and spleens. The colony forming unit counts and histological examination of lungs from H37Rv infected mice revealed that the benzothiazinethione analogue SKLB-TB1001 as a higher dose level was as effective as isoniazid. Moreover, in a multidrug-resistant (MDR)-TB mouse model, SKLB-TB1001 showed significant activity in a dose-dependent manner and was more effective than streptomycin. These results suggested that SKLB-TB1001 could be an antitubercular drug candidate worth further investigation.
Keywords: H37Rv; MDR-TB; Murine models; Mycobacterium tuberculosis; SKLB-TB1001.
Copyright © 2017 Elsevier Masson SAS. All rights reserved.