The DNA repair function of CUX1 contributes to radioresistance

Oncotarget. 2017 Mar 21;8(12):19021-19038. doi: 10.18632/oncotarget.14875.

Abstract

Ionizing radiation generates a broad spectrum of oxidative DNA lesions, including oxidized base products, abasic sites, single-strand breaks and double-strand breaks. The CUX1 protein was recently shown to function as an auxiliary factor that stimulates enzymatic activities of OGG1 through its CUT domains. In the present study, we investigated the requirement for CUX1 and OGG1 in the resistance to radiation. Cancer cell survival following ionizing radiation is reduced by CUX1 knockdown and increased by higher CUX1 expression. However, CUX1 knockdown is sufficient by itself to reduce viability in many cancer cell lines that exhibit high levels of reactive oxygen species (ROS). Consequently, clonogenic results expressed relative to that of non-irradiated cells indicate that CUX1 knockdown confers no or modest radiosensitivity to cancer cells with high ROS. A recombinant protein containing only two CUT domains is sufficient for rapid recruitment to DNA damage, acceleration of DNA repair and increased survival following radiation. In agreement with these findings, OGG1 knockdown and treatment of cells with OGG1 inhibitors sensitize cancer cells to radiation. Together, these results validate CUX1 and more specifically the CUT domains as therapeutic targets.

Keywords: CUX1; OGG1; base excision repair; radioresistance.

MeSH terms

  • Cell Line, Tumor
  • DNA Glycosylases / metabolism
  • DNA Repair / genetics*
  • Gene Knockdown Techniques
  • Homeodomain Proteins / genetics
  • Homeodomain Proteins / metabolism*
  • Humans
  • Immunoblotting
  • Microscopy, Confocal
  • Nuclear Proteins / genetics
  • Nuclear Proteins / metabolism*
  • Polymerase Chain Reaction
  • Radiation Tolerance / genetics*
  • Reactive Oxygen Species / metabolism
  • Repressor Proteins / genetics
  • Repressor Proteins / metabolism*
  • Transcription Factors

Substances

  • CUX1 protein, human
  • Homeodomain Proteins
  • Nuclear Proteins
  • Reactive Oxygen Species
  • Repressor Proteins
  • Transcription Factors
  • DNA Glycosylases
  • oxoguanine glycosylase 1, human