Structure and dynamics are essential elements of protein function. Protein structure is constantly fluctuating and undergoing conformational changes, which are captured by molecular dynamics (MD) simulations. We introduce a computational framework that provides a compact representation of the dynamic conformational space of biomolecular simulations. This method presents a systematic approach designed to reduce the large MD simulation spatiotemporal datasets into a manageable set in order to guide our understanding of how protein mechanics emerge from side chain organization and dynamic reorganization. We focus on the detection of side chain interactions that undergo rearrangements mediating global domain motions and vice versa. Side chain rearrangements are extracted from side chain interactions that undergo well-defined abrupt and persistent changes in distance time series using Gaussian mixture models, whereas global domain motions are detected using dynamic cross-correlation. Both side chain rearrangements and global domain motions represent the dynamic components of the protein MD simulation, and are both mapped into a network where they are connected based on their degree of coupling. This method allows for the study of allosteric communication in proteins by mapping out the protein dynamics into an intramolecular network to reduce the large simulation data into a manageable set of communities composed of coupled side chain rearrangements and global domain motions. This computational framework is suitable for the study of tightly packed proteins, such as G protein-coupled receptors, and we present an application on a seven microseconds MD trajectory of CC chemokine receptor 7 (CCR7) bound to its ligand CCL21.
Keywords: Change-point detection; GPCR; GPCR allostery; GPCR computational modeling; Helical domain motion; Intramolecular network; Membrane proteins; Molecular dynamics; Side chain reorganization.