Shape-Dependent Electrocatalytic Reduction of CO2 to CO on Triangular Silver Nanoplates

J Am Chem Soc. 2017 Feb 15;139(6):2160-2163. doi: 10.1021/jacs.6b12103. Epub 2017 Feb 6.

Abstract

Electrochemical reduction of CO2 (CO2RR) provides great potential for intermittent renewable energy storage. This study demonstrates a predominant shape-dependent electrocatalytic reduction of CO2 to CO on triangular silver nanoplates (Tri-Ag-NPs) in 0.1 M KHCO3. Compared with similarly sized Ag nanoparticles (SS-Ag-NPs) and bulk Ag, Tri-Ag-NPs exhibited an enhanced current density and significantly improved Faradaic efficiency (96.8%) and energy efficiency (61.7%), together with a considerable durability (7 days). Additionally, CO starts to be observed at an ultralow overpotential of 96 mV, further confirming the superiority of Tri-Ag-NPs as a catalyst for CO2RR toward CO formation. Density functional theory calculations reveal that the significantly enhanced electrocatalytic activity and selectivity at lowered overpotential originate from the shape-controlled structure. This not only provides the optimum edge-to-corner ratio but also dominates at the facet of Ag(100) where it requires lower energy to initiate the rate-determining step. This study demonstrates a promising approach to tune electrocatalytic activity and selectivity of metal catalysts for CO2RR by creating optimal facet and edge site through shape-control synthesis.

Publication types

  • Research Support, Non-U.S. Gov't