Sam68 was previously shown to be a critical host factor for foot-and-mouth disease virus (FMDV) replication. MicroRNA (miR) miR-203a is reportedly a negative regulator of Sam68 expression both in vitro and in vivo. Here, transfection of miR-203a-3p and miR-203a-5p mimics separately and in combination in a porcine cell line followed by FMDV infection resulted in diminished viral protein synthesis and a 4 and 6log reduction in virus titers relative to negative controls, respectively. Unexpectedly, Sam68 expression was increased by miR-203a-5p transfection, but not miR-203a-3p. miR-203a-5p also down-regulated Survivin expression, which was predicted to play a role in FMDV infection. Moreover, miR-203a-5p but not miR-203a-3p affected a reduction in FMDV viral RNA. These effects were not replicated with a related Picornavirus, suggesting FMDV specificity. Importantly, miR-203a-3p and miR-203a-5p impaired FMDV infection across multiple FMDV serotypes. We concluded that miR-203a-3p and miR-203a-5p represent attractive potential naturally occurring bio-therapeutics against FMDV.
Keywords: Bio-therapeutic; Foot-and-mouth disease virus (FMDV); MiR); MiR-203a-3p; MiR-203a-5p; MicroRNA (miRNA; Sam68; Survivin.
Published by Elsevier Inc.