Objective: To compare regional nicotinic cholinergic receptor binding in older adults with Alzheimer disease (AD) and healthy older adults in vivo and to assess relationships between receptor binding and clinical symptoms.
Methods: Using cross-sectional positron emission tomography (PET) neuroimaging and structured clinical assessment, outpatients with mild to moderate AD (N = 24) and healthy older adults without cognitive complaints (C group; N = 22) were studied. PET imaging of α4β2* nicotinic cholinergic receptor binding using 2-[18F]fluoro-3-(2(S)azetidinylmethoxy)pyridine (2FA) and clinical measures of global cognition, attention/processing speed, verbal memory, visuospatial memory, and neuropsychiatric symptoms were used.
Results: 2FA binding was lower in the AD group compared with the C group in the medial thalamus, medial temporal cortex, anterior cingulate, insula/opercula, inferior caudate, and brainstem (p < 0.05, corrected cluster), but binding was not associated with cognition. The C group had significant inverse correlations between 2FA binding in the thalamus (left: rs = -0.55, p = 0.008; right: rs = -0.50, p = 0.02; N = 22) and hippocampus (left: rs = -0.65, p = 0.001; right: rs = -0.55, p = 0.009; N = 22) and the Trails A score. The AD group had inverse correlation between 2FA binding in anterior cingulate (left: rs = -0.50, p = 0.01; right: rs = -0.50, p = 0.01; N = 24) and Neurobehavioral Rating Scale agitation/disinhibition factor score.
Conclusion: Cholinergic receptor binding is reduced in specific brain regions in mild to moderate AD and is related to neuropsychiatric symptoms. Among healthy older adults, lower receptor binding may be associated with slower processing speed. Cholinergic receptor binding in vivo may reveal links to other key brain changes associated with aging and AD and may provide a potential molecular treatment target.
Keywords: Alzheimer disease; PET imaging; cholinergic receptors; healthy aging.
Published by Elsevier Inc.