Nanog is an important embryonic stem cell (ESC) gene that does not function as a classical oncogene, but needs to cooperate with other molecules to potentiate tumorigenic activity. The question addressed by the present study was whether a miRNA link exists between Nanog and epithelial-mesenchymal transition (EMT)-mesenchymal-epithelial transition (MET) plasticity. Here, we found that Nanog mRNA expression level was inversely correlated with miR-200c and miR-200b expression levels in colon cancer cell lines and human colorectal cancer tissues. Forced Nanog expression in low-Nanog colon cancer cells inhibited miR-200c and miR-200b expression, and interfered Nanog expression in high-Nanog colon cancer cells promoted miR-200c and miR-200b expression. Furthermore, we confirmed that Nanog directly repressed transcription of the miR-200c and miR-200b genes, and miR-200c and miR-200b mediated Nanog-induced EMT occurrence. Luciferase and ChIP assays determined that Nanog bound directly to the potential Nanog binding sites in the miR-200c and miR-200b promoters and repressed their transcription. In conclusion, our findings suggest that Nanog modulates EMT-MET plasticity by regulating miR-200 clusters via a direct transcriptional mechanism, and the Nanog-miR-200 axis may be a good therapeutic target for CRC control.
Keywords: Colon cancer; Epithelial–mesenchymal transition; Mesenchymal–epithelial transition; Nanog; Transcriptional regulation; miRNA.
Copyright © 2017 Elsevier B.V. All rights reserved.