Multidrug resistance (MDR) correlates with treatment failure and poor prognosis among breast cancer patients. This study was aimed to investigate the possible mechanism by which microRNA-130b-3p (miR-130b) mediates the chemoresistance and proliferation of breast cancer. MiR-130b was found to be up-regulated in tumor tissues versus adjacent tissues of breast cancer, as well as in adriamycin (ADR) resistant breast cancer cell line (MCF-7/ADR) versus its parental line (MCF-7) and the non-malignant breast epithelial cell line (MCF-10A), demonstrating its crucial relevance for breast cancer biology. We identified that PTEN was a direct target of miR-130b and inversely correlated with miR-130b expression in breast cancer. Moreover, over-expression of miR-130b promoted drug resistance, proliferation and decreased apoptosis of MCF-7 cells, while suppression of miR-130b enhanced drug cytotoxicity and apoptosis, as well as reduced proliferation of MCF-7/ADR cells in vitro and in vivo. Particularly, miR-130b mediated the activity of phosphoinositide-3 kinase (PI3K)/Akt signaling pathway as well as the chemoresistance and proliferation of breast cancer cell lines, which was partially blocked following knockdown of PTEN. Altogether, miR-130b targets PTEN to induce MDR, proliferation, and apoptosis via PI3K/Akt signaling pathway. This provides a novel promising candidate for breast cancer therapy.