Predicting Drug-Induced Cholestasis with the Help of Hepatic Transporters-An in Silico Modeling Approach

J Chem Inf Model. 2017 Mar 27;57(3):608-615. doi: 10.1021/acs.jcim.6b00518. Epub 2017 Mar 8.

Abstract

Cholestasis represents one out of three types of drug induced liver injury (DILI), which comprises a major challenge in drug development. In this study we applied a two-class classification scheme based on k-nearest neighbors in order to predict cholestasis, using a set of 93 two-dimensional (2D) physicochemical descriptors and predictions of selected hepatic transporters' inhibition (BSEP, BCRP, P-gp, OATP1B1, and OATP1B3). In order to assess the potential contribution of transporter inhibition, we compared whether the inclusion of the transporters' inhibition predictions contributes to a significant increase in model performance in comparison to the plain use of the 93 2D physicochemical descriptors. Our findings were in agreement with literature findings, indicating a contribution not only from BSEP inhibition but a rather synergistic effect deriving from the whole set of transporters. The final optimal model was validated via both 10-fold cross validation and external validation. It performs quite satisfactorily resulting in 0.686 ± 0.013 for accuracy and 0.722 ± 0.014 for area under the receiver operating characteristic curve (AUC) for 10-fold cross-validation (mean ± standard deviation from 50 iterations).

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cholestasis / chemically induced*
  • Cholestasis / metabolism*
  • Computer Simulation*
  • HEK293 Cells
  • Humans
  • Liver / drug effects*
  • Liver / metabolism*
  • Membrane Transport Proteins / metabolism*
  • Models, Biological*

Substances

  • Membrane Transport Proteins