Anxiety reduction following repeated exposure to stressful experiences is generally held to depend on neural processes involved in extinction of conditioned fear. We predicted that repeated exposure to stressful experiences would change activity throughout the circuitry serving extinction, including ventromedial prefrontal cortex (vmPFC), the hippocampus and the amygdala. To test this prediction, 36 participants diagnosed with SAD performed two successive speeches in front of an observing audience while regional cerebral blood flow (rCBF) was recorded using positron emission tomography. To control for non-anxiolytic effects of repeated exposure, rCBF was also measured during repeated presentations of neutral and angry facial expressions. Results showed that anxiety ratings and heart rate decreased from the first to the second speech, indicating an anxiolytic effect of repeated exposure. Exposure attenuated rCBF in the amygdala whereas no change in rCBF was observed in the vmPFC or hippocampus. The rCBF-reductions in the amygdala were greater following repetition of the speech task than repetition of face exposure indicating that they were specific to anxiety attenuation and not due to a reduced novelty. Our findings suggest that amygdala-related attenuation processes are key to understanding the working mechanisms of exposure therapy.
Keywords: Amygdala; Cognitive behavior therapy; Extinction; Hippocampus; Social phobia; VmPFC.
Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.