Background: Remarkable disagreement among different systems of 25-hydroxy vitamin D 25(OH)D assay makes decision making for both clinical and community interventions very difficult. This study aimed to harmonize the results obtained from different 25(OH)D assay systems.
Methods: A total of 275 serum samples were analyzed for 25(OH)D using DIAsource-enzyme immunoassay (EIA), DIAsource-radioimmunoassay (RIA), Roche-electrochemiluminescence (ECL), Diasorin-chemiluminescent immunoassay (CLIA), and high-performance liquid chromatography (HPLC), as the reference method. Serum intact parathyroid hormone (iPTH) was also measured in all samples. Between-system agreement and harmonization were evaluated using Bland-Altman analysis, receiver operating characteristic (ROC), and regression analysis.
Results: Mean serum 25(OH)D concentrations and frequency distribution of vitamin D status showed a significant difference among the studied systems (P<.001 for both). Serum 25(OH)D assay results from all systems correlated with those from HPLC. As compared with HPLC, ECL showed a positive bias (+3.8 nmol/L), whereas CLIA had a negative bias (-11.9 nmol/L). Both EIA and RIA showed a more or less similar positive bias (8.0 and 8.1 nmol/L, respectively). Using serum iPTH-based 25(OH)D cutoff points, only ECL results became comparable to and without significant difference with HPLC. However, when system-specific cutoffs were defined based on HPLC results using regression equations, mean 25(OH)D and frequency distribution of vitamin D status were more harmonized compared with the other methods.
Conclusion: Our findings showed that with adjustment of circulating 25(OH)D based on HPLC, frequency distribution of vitamin D status, as judged by different methods, can be well harmonized with no statistically significant inter-system difference.
Keywords: 25-hydroxycalciferol; harmonization; high-performance liquid chromatography; immunoassay; vitamin D.
© 2017 Wiley Periodicals, Inc.