Air pollution is known to exacerbate respiratory diseases and epidemiological studies have shown that women present more chronic respiratory symptoms than man exposed to traffic pollution, however, the reason why is unclear. This study evaluated the inflammatory differences in BALB/c mouse males (n=34) and females (n=111) in three phases of the estrous cycle that were exposed to ambient air (AA) or concentrated ambient particles (CAPs). Tracheal hyperreactivity to methacholine, bronchoalveolar lavage fluid (BALF) and immunohistochemical of airways and lung parenchyma were studied. Hyperreactivity increased in CAPs-exposed female mice compared with AA-exposed mice in estrus (p<0.05) and proestrus phases (p<0.05) and decreased in CAPs-exposed males compared with those exposed to AA (p<0.05). Males had increased numbers of total cells (p=0.037) and macrophages (p=0.028) compared to females. BALF levels of cyclooxygenase-2(COX-2) (p=0.000), transforming growth factor alpha (TGF-α) (p=0.001) and IL-8 receptor alpha (IL-8Rα) (p=0.014) were increased in males compared with proestrus, estrus and diestrus females, independent of exposure. Proestrus females exhibited significantly higher cadherin expression in lung parenchyma than did males (p=0.005). CAPs exposure increased matrix metalloproteinase-9 (MMP-9) (p=0.024) and isoprostane (p=0.003) expression in the airways of both, males and females. The level of substance P (SP) (p=0.001) increased in lung parenchyma in males compared with females, while IL-17 levels in airways (p=0.042) and in lung parenchyma (p=0.008) increased in females. MMP-9 levels (p=0.024) were significantly lower in the lung parenchyma of CAPs-exposed females. TGF-α (p=0.007) levels increased in the lung parenchyma of CAPs-exposed females compared to AA-exposed females. These results suggest that inflammatory markers differentially expressed in male mice were mostly linked to acute inflammation (IL-1β, IL-8Rα, COX-2), whereas in females, markers that may lead to a chronic inflammatory process such as IL-17 and remodeling (MMP-9) were increased.
Keywords: Air pollution; Cytokines; Inflammation; Lung parenchyma; Metalloproteinase; Neurokinins.
Copyright © 2017 Elsevier B.V. All rights reserved.