Salvia miltiorrhiza is one of the most widely-used medicinal plants. Here, we systematically analyzed the RNA editing events in its mitochondria. We developed a pipeline using REDItools to predict RNA editing events from stand-specific RNA-Seq data. The predictions were validated using reverse transcription, RT-PCR amplification and Sanger sequencing experiments. Putative sequences motifs were characterized. Comparative analyses were carried out between S. miltiorrhiza, Arabidopsis thaliana and Oryza sativa. We discovered 1123 editing sites, including 225 "C to U" sites in the protein-coding regions. Fourteen of sixteen (87.5%) sites were validated. Three putative DNA motifs were identified around the predicted sites. The nucleotides on both strands at 115 of the 225 sites had undergone RNA editing, which we called symmetrical RNA editing (SRE). Four of six these SRE sites (66.7%) were experimentally confirmed. Re-examination of strand-specific RNA-Seq data from A. thaliana and O. sativa identified 327 and 369 SRE sites respectively. 78, 20 and 13 SRE sites were found to be conserved among A. thaliana, O. sativa and S. miltiorrhiza respectively. This study provides a comprehensive picture of RNA editing events in the mitochondrial genome of S. miltiorrhiza. We identified SREs for the first time, which may represent a universal phenomenon.