The parameter selection for diffusion MRI experiments is dominated by the "k-q tradeoff" whereby the Signal to Noise Ratio (SNR) of the images is traded for either high spatial resolution (determined by the maximum k-value collected) or high diffusion sensitivity (effected by b-value or the q vector) but usually not both. Furthermore, different brain regions (such as gray matter and white matter) likely require different tradeoffs between these parameters due to the size of the structures to be visualized or the length-scale of the microstructure being probed. In this case, it might be advantageous to combine information from two scans - a scan with high q but low k (high angular resolution in diffusion but low spatial resolution in the image domain) to provide maximal information about white matter fiber crossing, and one low q but high k (low angular resolution but high spatial resolution) for probing the cortex. In this study, we propose a method, termed HIgh b-value and high Resolution Integrated Diffusion (HIBRID) imaging, for acquiring and combining the information from these two complementary types of scan with the goal of studying diffusion in the cortex without compromising white matter fiber information. The white-gray boundary and pial surface obtained from anatomical scans are incorporated as prior information to guide the fusion. We study the complementary advantages of the fused datasets, and assess the quality of the HIBRID data compared to either alone.
Keywords: Brain connectivity; Crossing fiber; HARDI; High resolution; Human Connectome Project (HCP); Multi-shell multi-resolution MRI.
Copyright © 2017 Elsevier Inc. All rights reserved.