Organic two-dimensional (2D) crystals are fundamentally important for development of future devices. Despite that more than a half of man-made products contain polymers, 2D crystals consisting of long linear chains have yet to be explored. Here we report on the fabrication of 2D polyaniline (PANI) crystals via rational electrochemical polymerization followed by liquid-phase exfoliation. The 2D PANI is molecularly thin (∼0.8 nm) and composed of PANI chains with a number-average molecular weight of ∼31 000. The chains are parallel to each other with the benzene rings standing almost vertically to the surface, implying a face-to-face arrangement of the neighboring chains held together by abundant π-π interactions augmented with hydrogen bonds. The 2D PANI can be readily transferred to various solid surfaces and exhibit interesting electrical and optical properties, suggesting that they would be potentially useful in photoelectronic devices and other applications.
Keywords: Two-dimensional crystals; anisotropic electrical conductivity; electrochemical polymerization; liquid-phase exfoliation; polyaniline.