Familial aggregation of chronic kidney disease and its component phenotypes-reduced glomerular filtration rate, proteinuria and renal histologic changes-has long been recognized. Rates of severe kidney disease are also known to differ markedly between populations based on ancestry. These epidemiologic observations support the existence of nephropathy susceptibility genes. Several molecular genetic technologies are now available to identify causative loci. The present article summarizes available strategies useful for identifying nephropathy susceptibility genes, including candidate gene association, family-based linkage, genome-wide association and admixture mapping (mapping by admixture linkage disequilibrium) approaches. Examples of loci detected using these techniques are provided. Epigenetic studies and future directions are also discussed. The identification of nephropathy susceptibility genes, coupled with modifiable environmental triggers impacting their function, is likely to improve risk prediction and transform care. Development of novel therapies to prevent progression of kidney disease will follow.
Keywords: admixture mapping; chronic kidney disease; genetics; genome-wide association study; linkage analysis.
© The Author 2017. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.