Identification of nonpoint sources of nitrogen (N) and phosphorus (P) in urban systems is imperative to improving water quality and better managing eutrophication. Winter contributions and sources of annual N and P loads from urban watersheds are poorly characterized in northern cities because monitoring is often limited to warm-weather periods. To determine the winter export of N and P, we monitored stormwater outflow in a residential watershed in Saint Paul, Minnesota during 2012-2014. Our data demonstrate that winter melt events contribute a high percentage of annual N and P export (50%). We hypothesized that overwintering leaf litter that is not removed by fall street sweeping could be an important source to winter loads of N and P. We estimated contributions of this source by studying decomposition in lawns, street gutters, and catch basins during two winters. Rates of mass and N loss were negligible during both winters. However, P was quickly solubilized from decomposing leaves. Using mass balances and estimates of P leaching losses, we estimated that leaf litter could contribute 80% of winter total dissolved phosphorus (TDP) loading in this watershed (∼40% of annual TDP loading). Our work indicates that urban trees adjacent to streets likely represent a major source of P pollution in northern cities. Management that targets important winter sources such as tree leaves could be highly effective for reducing P loading and may mitigate eutrophication in urban lakes and streams in developed cities.