Multi-component diffusion characterization of radiation-induced white matter damage

Med Phys. 2017 May;44(5):1747-1754. doi: 10.1002/mp.12170. Epub 2017 Mar 28.

Abstract

Purpose: We used multi-b-value diffusion models to characterize microstructural white matter changes after brain radiation into fast and slow components, in order to better understand the pathophysiology of radiation-induced tissue damage.

Methods: Fourteen patients were included in this retrospective analysis with imaging prior to, and at 1, 4-5, and 9-10 months after radiotherapy (RT). Diffusion signal decay within brain white matter was fit to a biexponential model to separate changes within the slow and fast components. Linear mixed-effects models were used to obtain estimates of the effect of radiation dose and time on the model parameters.

Results: We found an increase of 0.11 × 10-4 and 0.14 × 10-4 mm2 /s in the fast diffusion coefficient per unit dose-time (Gy-month) in the longitudinal and transverse directions, respectively. By contrast, the longitudinal slow diffusion coefficient decreased independently of dose, by 0.18 × 10-4 , 0.16 × 10-4 , and 0.098 × 10-4 mm2 /s at 1, 4, and 9 months post-RT, respectively.

Conclusions: Radiation-induced white matter changes in the first year following RT are driven by dose-dependent increases in the fast component and dose-independent decreases in the slow component.

Keywords: biexponential; diffusion MRI; radiation; white matter.

MeSH terms

  • Brain
  • Brain Neoplasms / radiotherapy*
  • Diffusion
  • Diffusion Magnetic Resonance Imaging*
  • Humans
  • Retrospective Studies
  • White Matter / pathology*
  • White Matter / radiation effects