RhoA/ROCK pathway inhibition by fasudil suppresses the vasculogenic mimicry of U2OS osteosarcoma cells in vitro

Anticancer Drugs. 2017 Jun;28(5):514-521. doi: 10.1097/CAD.0000000000000490.

Abstract

GTPase RhoA and its downstream Rho-associated coiled-coil-containing protein kinases (ROCKs) are frequently overexpressed in human cancers. Inhibition of the RhoA/ROCK pathway blocks angiogenesis mediated by the vascular endothelial growth factor, which led us to investigate the role of this pathway in vasculogenic mimicry (VM) - a process by which aggressive cancer cells form vessel-like structures that provide adequate blood supply for tumor growth. We showed that the expression of RhoA and its effector kinases ROCK1/2 was much higher in human osteosarcoma (OS) tissues and the human OS cell line U2OS than in nontumorous tissues and cell line hFOB 1.19 using western blot analysis and real-time PCR. Inhibition of the RhoA/ROCK signaling pathway by the pharmacological inhibitor fasudil reduced vascular-like channels of U2OS cells in Matrigel. Furthermore, we used rhodamine-phalloidin immunofluorescence, wound healing assay, and transwell migration assay to examine the effect of fasudil on tumor cell plasticity and motility, both of which play key roles in VM formation. Finally, we explored the underlying mechanisms of fasudil-induced VM destruction. In this context, we showed that the RhoA/ROCK signaling pathway is a novel regulator in VM of U2OS OS cells and suggest that fasudil in conjunction with established treatments may present a novel therapeutic strategy for OS.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine / analogs & derivatives*
  • 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine / pharmacology
  • Bone Neoplasms / blood supply
  • Bone Neoplasms / drug therapy*
  • Bone Neoplasms / metabolism
  • Bone Neoplasms / pathology
  • Cell Line, Tumor
  • Cell Movement / drug effects
  • Cell Plasticity / drug effects
  • Cell Proliferation / drug effects
  • Cytoskeleton / drug effects
  • Cytoskeleton / pathology
  • Fluorescent Antibody Technique
  • Humans
  • Neovascularization, Pathologic / drug therapy
  • Neovascularization, Pathologic / metabolism
  • Neovascularization, Pathologic / pathology
  • Osteosarcoma / blood supply
  • Osteosarcoma / drug therapy*
  • Osteosarcoma / metabolism
  • Osteosarcoma / pathology
  • Protein Kinase Inhibitors / pharmacology
  • Signal Transduction / drug effects
  • rho-Associated Kinases / antagonists & inhibitors*
  • rho-Associated Kinases / biosynthesis
  • rho-Associated Kinases / metabolism
  • rhoA GTP-Binding Protein / antagonists & inhibitors*
  • rhoA GTP-Binding Protein / biosynthesis
  • rhoA GTP-Binding Protein / metabolism

Substances

  • Protein Kinase Inhibitors
  • RHOA protein, human
  • 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine
  • ROCK1 protein, human
  • ROCK2 protein, human
  • rho-Associated Kinases
  • rhoA GTP-Binding Protein
  • fasudil