Optimization of Multistage Extraction of Olive Leaves for Recovery of Phenolic Compounds at Moderated Temperatures and Short Extraction Times

Foods. 2013 Dec 30;3(1):66-81. doi: 10.3390/foods3010066.

Abstract

The aim of the present study was to improve the recovery of polyphenols from olive leaves (OL) by optimizing a multistage extraction scheme; provided that the olive leaves have been previously steam blanched. The maximum total phenol content expressed in ppm caffeic acid equivalents was obtained at pH 2, particle size 0.315 mm, solid-liquid ratio 1:7 and aqueous ethanol concentration 70% (v/v). The optimum duration time of each extraction stage and the operation temperature, were chosen based on qualitative and quantitative analysis of oleuropein (OLE), verbascoside, luteolin-7-O-glucoside and apigenin-7-O-glucoside performed by high performance liquid chromatography with diode array detector (HPLC-DAD). The optimum conditions for multistage extraction were 30 min total extraction time (10 min × 3 stages) at 85 °C. The 80% of the total yield of polyphenols was obtained at the 1st stage of the extraction. The total extraction yield of oleuropein was found 23 times higher (103.1 mg OLE/g dry weight (d.w.) OL) compared to the yield (4.6 mg OLE/g d.w. OL) obtained by the conventional extraction method (40 °C, 48 h). However, from an energetic and hence from an economical point of view it is preferable to work at 40 °C, since the total extraction yield of polyphenolic compounds was only 17% higher for a double increase in the operating temperature (i.e., 85 °C).

Keywords: antioxidant activity; multistage extraction; olive leaf; polyphenols; steam blanching.