The susceptibility gene screening in a Chinese high-altitude pulmonary edema family by whole-exome sequencing

Yi Chuan. 2017 Feb 20;39(2):135-142. doi: 10.16288/j.yczz.16-288.

Abstract

High-altitude pulmonary edema (HAPE) is one of idiopathic mountain sicknesses that occur in healthy lowlanders when they quickly ascend to altitudes exceeding 2500 m above sea levels within 1-7 days. Growing evidence suggests that genetics plays an important role in the risk of HAPE. In this study, we recruited a Chinese HAPE family and screened genetic variations in the 7 family members (including 6 family members with a medical history of HAPE and the propositus's mother) by whole-exome sequencing. The results showed 18 genetic variations (9 SNVs and 9 Indels) were related to HAPE. Two SNV sites (CFHR4 (p.L85F) and OXER1 (p.R176C)) were predicted to be damaging and alter protein functions by SIFT, PolyPhen-2 and PROVEAN software. The biological function of OXER1 was highly related to the hypoxia-inducible factor pathway. Therefore, those two sites were identified as candidate pathological variations. Moreover, other SNVs (NMB p.S150P, APOB p.I4194T, EIF4ENIF1 p.Q763P) and Indels (KCNJ12 p.EE333-334E, ANKRD31 p.LMN251-253LN, OR2A14 p.HFFC175-178HFC) were also predicted to be damaging as well, which also might be considered as potential candidate pathological variations related to HAPE. Collectively we firstly screened the susceptibility genes in a Chinese HAPE family by whole-exome sequencing, which will provide new clues for further mechanistic studies of HAPE.

MeSH terms

  • Altitude Sickness / etiology
  • Altitude Sickness / genetics*
  • Exome*
  • Genetic Predisposition to Disease*
  • Humans
  • Hypertension, Pulmonary / etiology
  • Hypertension, Pulmonary / genetics*
  • Sequence Analysis, DNA

Supplementary concepts

  • Pulmonary edema of mountaineers