24-epibrassinolide stimulates imidacloprid detoxification by modulating the gene expression of Brassica juncea L

BMC Plant Biol. 2017 Feb 28;17(1):56. doi: 10.1186/s12870-017-1003-9.

Abstract

Background: Pesticides cause oxidative stress to plants and their residues persist in plant parts, which are a major concern for the environment as well as human health. Brassinosteroids (BRs) are known to protect plants from abiotic stress conditions including pesticide toxicity. The present study demonstrated the effects of seed-soaking with 24-epibrassinolide (EBR) on physiological responses of 10-day old Brassica juncea seedlings grown under imidacloprid (IMI) toxicity.

Results: In the seedlings raised from EBR-treated seeds and grown under IMI toxicity, the contents of hydrogen peroxide (H2O2) and superoxide anion (O.2-) were decreased, accompanied by enhanced activities of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione-S-transferase (GST), guaiacol peroxidase (POD) and the content of glutathione (GSH). As compared to controls, the gene expressions of SOD, CAT, GR, POD, NADH (NADH-ubiquinone oxidoreductase), CXE (carboxylesterase), GSH-S (glutathione synthase), GSH-T (glutathione transporter-1), P450 (cytochrome P450 monooxygenase) and GST1-3,5-6 were enhanced in the seedlings raised from EBR-treated seeds and grown in IMI supplemented substratum. However, expression of RBO (respiratory burst oxidase, the gene responsible for H2O2 production) was decreased in seedlings raised from EBR treated seeds and grown under IMI toxicity. Further, the EBR seed treatment decreased IMI residues by more than 38% in B. juncea seedlings.

Conclusions: The present study revealed that EBR seed soaking can efficiently reduce oxidative stress and IMI residues by modulating the gene expression of B. juncea under IMI stress. In conclusion, exogenous EBR application can protect plants from pesticide phytotoxicity.

Keywords: Brassica juncea; Brassinosteroids; Imidacloprid toxicity; Pesticide residues.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Brassinosteroids / pharmacology*
  • Gene Expression / drug effects
  • Genes, Plant / drug effects
  • Glutathione / metabolism
  • Imidazoles / antagonists & inhibitors*
  • Imidazoles / toxicity
  • Inactivation, Metabolic / genetics
  • Insecticides / antagonists & inhibitors*
  • Insecticides / toxicity
  • Mustard Plant / drug effects*
  • Mustard Plant / enzymology
  • Mustard Plant / genetics*
  • Neonicotinoids
  • Nitro Compounds / antagonists & inhibitors*
  • Nitro Compounds / toxicity
  • Oxidative Stress
  • Plant Growth Regulators / pharmacology*
  • Reactive Oxygen Species / metabolism
  • Seeds / drug effects
  • Seeds / genetics
  • Steroids, Heterocyclic / pharmacology*

Substances

  • Brassinosteroids
  • Imidazoles
  • Insecticides
  • Neonicotinoids
  • Nitro Compounds
  • Plant Growth Regulators
  • Reactive Oxygen Species
  • Steroids, Heterocyclic
  • imidacloprid
  • Glutathione
  • brassinolide