Brain bioenergetics and redox state measured by 31P magnetic resonance spectroscopy in unaffected siblings of patients with psychotic disorders

Schizophr Res. 2017 Sep:187:11-16. doi: 10.1016/j.schres.2017.02.024. Epub 2017 Mar 1.

Abstract

Background: Brain bioenergetic anomalies and redox dysregulation have been implicated in the pathophysiology of psychotic disorders. The present study examined brain energy-related metabolites and the balance between nicotinamide adenine dinucleotide metabolites (oxidized NAD+ and reduced NADH) using 31P-magnetic resonance spectroscopy (31P-MRS) in unaffected siblings, compared to first episode psychosis (FEP) patients and healthy controls.

Methods: 21 unaffected siblings, 32 FEP patients (including schizophrenia spectrum and affective psychoses), and 21 controls underwent 31P-MRS in the frontal lobe (6×6×4cm3) on a 4T MR scanner, using custom-designed dual-tuned surface coil with outer volume suppression. Brain parenchymal pH and steady-state metabolite ratios of high energy phosphate compounds were measured. NAD+ and NADH levels were determined using a 31P-MRS fitting algorithm. 13 unaffected sibling-patient pairs were related; other patients and siblings were unrelated. ANCOVA analyses were used to examine 31P-MRS measures, with age and gender as covariates.

Results: The phosphocreatine/adenosine triphosphate ratio was significantly reduced in both unaffected siblings and FEP patients, compared to controls. NAD+/NADH ratio was significantly reduced in patients compared to siblings and controls, with siblings showing a reduction in NAD+/NADH compared to controls that was not statistically significant. Compared to patients and controls, siblings showed significantly reduced levels of NAD+. Siblings did not differ from patients or controls on brain pH.

Discussion: Our results indicate that unaffected siblings show some, but not all the same abnormalities in brain energy metabolites and redox state as FEP patients. Thus, 31P-MRS studies may identify factors related both to risk and expression of psychosis.

Keywords: (31)P magnetic resonance spectroscopy; Bipolar disorder; Energy metabolism; Oxidative stress; Schizophrenia; Unaffected relatives.

MeSH terms

  • Adolescent
  • Adult
  • Bipolar Disorder / diagnostic imaging
  • Bipolar Disorder / drug therapy
  • Bipolar Disorder / metabolism*
  • Female
  • Frontal Lobe / diagnostic imaging
  • Frontal Lobe / metabolism*
  • Humans
  • Hydrogen-Ion Concentration
  • Magnetic Resonance Spectroscopy* / methods
  • Male
  • NAD / metabolism
  • Oxidation-Reduction
  • Phosphorus Isotopes
  • Psychotic Disorders / diagnostic imaging
  • Psychotic Disorders / drug therapy
  • Psychotic Disorders / metabolism*
  • Psychotropic Drugs / therapeutic use
  • Schizophrenia / diagnostic imaging
  • Schizophrenia / drug therapy
  • Schizophrenia / metabolism*
  • Siblings*
  • Young Adult

Substances

  • Phosphorus Isotopes
  • Psychotropic Drugs
  • NAD