Dissociative Water Adsorption by Al3O4+ in the Gas Phase

J Phys Chem Lett. 2017 Mar 16;8(6):1272-1277. doi: 10.1021/acs.jpclett.7b00273. Epub 2017 Mar 6.

Abstract

We use cryogenic ion trap vibrational spectroscopy in combination with density functional theory (DFT) to study the adsorption of up to four water molecules on Al3O4+. The infrared photodissociation spectra of [Al3O4(D2O)1-4]+ are measured in the O-D stretching (3000-2000 cm-1) as well as the fingerprint spectral region (1300-400 cm-1) and are assigned based on a comparison with simulated harmonic infrared spectra for global minimum-energy structures obtained with DFT. We find that dissociative water adsorption is favored in all cases. The unambiguous assignment of the vibrational spectra of these gas phase model systems allows identifying characteristic spectral regions for O-D and O-H stretching modes of terminal (μ1) and bridging (μ2) hydroxyl groups in aluminum oxide/water systems, which sheds new light on controversial assignments for solid Al2O3 phases.